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ABSTRACT

URLIM, a unified radome limitations computer program, has
been developed to ald the radome design engineer by providing a
definition of the maximum flight performance capabilities of ra-
dome materials. URLIM numerically determines the response oi the
radome to aerodynamic heating and loading. It computes the follow-
ing as functions of trajectory time: thermal stress; radar bore-
sight error rates; missile-radome attachment stresses cause. by
maneuvers, pressure, and drag forces; and the onset of rador.e
melting. The basic output of the program is a notation of trajec-
tory time at which the radome reaches its design limitatiors.
Many options are available to the user of the URLIM progrim that
provide a wide variety of analysie capability. For this .e.son,
URLIM may also be considered as a general purpose aerody:amic
heat transfer program as well as a specific puryose radere limita-
tions program. Volume 1 of this report presents the thenretical
background of the analysis techniques used in URLIM; Vo : me 2
provides a detailed explanation of how to use URLIM.
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PREFACE

The purpose of this volume 1s to present the theoretical
background of the analysis techniques used in the URLIM program.
This discussion will consist of three basic parts: first, it will
present the mathematical relationships between variables, along
with their assumptions and limitations; second, it will describe
the numerical techniques employed by the program to solve the vari-
ous equations; third, it will outline the data managemeni tech-
niques used to fins thie various solutions. The first sz=ction de-
scribes the phy2ical models that are the analytical basis of the
program. As such, this section provides a view of URLIM that will
enable the prospective user to ass~ss the a~curacy and completeness
of the facilities provided in the program. The last two sections
will provide an overview of the URLIM program organization that may
give the interested user an insight to the generality of the code.
Moreover, as errors will inevitably occur, this level of under-
standing of the program's organizaiion will serve as an aid to de-
bugging.
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1. THEORETICAL BASIS

HEAT TRANSFER -- CONDUCTION

The unified radome limitations computer program (URLIM) was
developed to predict heat transfer within a solid. Fundamentally,
the determination of the time~dependent temperature field within
a closed volume will depend on the rate of heat conducted orthog-
onal’y across the surface of the volume and the rate of change of
internal energy within the volume. We will assume the arbitrary
case of a volume V with some temperature existing at every point
within V. In the absence of any effects from electric or magnetic
fields, surface tension, or chemical reactions, the energy in a
golid is a function of its temperature such that

q afoc T)
v P (1)
dt ot !

where

du/dt is the time rate of change of internal energy in a
differential volume, 4V,

p is the density of the material,
c. 18 the specific heat of the material,
is the magnitude of the temperature field at the dif-
ferential volume dV (i.e., the temperature of dV),
and
t is the independent variable time.

The movement of heat through any point in the volume is related to
the gradient of the temperature field within the volume; that is,

Q= -kVT , (2)

where

6 is the heat flow vector,
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VT is the temperature field gradient vector, and

k is the proportionality factor that can only be a func-
tion of temperature (i.e., k = £(T)).

Equation (2) states that heat flows within a solid in the opposite
direction to the temperature gradiont and that the magnitude of
that flow is related by the material property k, which may be
temperature dependent.

! With Equation (2) describing the flow of heat at any point
in the volume, the divergence of the vector Q is written as

VeQ=V kT , (3)

and 1s thought of 15 the chaage in magnitude cf heat flow with re-
spect to any poin. in the volume. In a conservative system (as

) has been :esumed here) this spatial change in heat flow at a point
"~ in the volune 18 equal to the temporal change in inturnal energy
of that point. Using iqa. (1) and (3) the following equation rep-
resents this statewori of the conservation of eneryy:

alpe T
(pc T)

VekiT =~ it (4a)

The material property product (pcp) i8 allowed to depend explicitly
only on temperature (i.e., pcp = £(T)), so that

T e LUT w ope oL
v o kYT pcp e (4b)

The operator V is the vector gradient operator and must be
represented in an orthogonal coordinate system. It can have the
following definitions.

Cartesian Coordinates:

- 3 %~ .3 %~ 3 °
v 5 i+ 5 §+ o, ko, (5)
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where §, §, and z are the unit vectors in each of the coordinate
directions.
Cylindrical Coordinates:

3
38

3 A 1 " 9 ~
v 5r ¥ + = 6+ 32 2 ° (6)
where
r is the radial coordinate,
8 is the circumferential coordinate, and

z 18 the axial coordinate.

Spherical Coordinates:

- 3 A
v Frt m

" [
e
{
-
+
<>
-

where
r is the radial coordinate,
¢ is the co-latitudinal coordinate, and
6 is the longitudinal coordinate.

Equation (4) is the governing relationship tetween the
spatisi iad temporal changes of temperature within the body. Spe-
cific soistions to the sets of differential equations indicated in
Eq. (4) depend on the specification of the conditions that exist
at the boundary surface of the volume and whether or not there are
independent hcat sources or sinks present within the volume. Sec-
tion 2 of this volume will show how the general relationships ex-
pressed here are modeled and the temperature field solved for as a
function of time.

HEAT TRANSFER -- CCNVECTION

In situations where the volume being considered is subjected
to a fluid flowing at its surface, heat transfer will occur across

- 11 -
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the surface due to conduction within the fluid, viscous friction
dissipation within the fluid near the surface, and molecular mo-
tion in the boundary layer (i.e., convection). In general, the
static temperature of the fluid and the surface temperature cf the
solid will be different and there will be a potential for moving
heat across the surface. Figure 1 shows a schematic diagram of a
fluid flowing past a solid surface with an appropriate coordinate
system and with the important parameters listed. If the bulk of
the fluid stream in the vicinity of the surface 1s hotter than the
surfsce, there wiil be a spatial variance of temperature through
the stream as showr in the figure. Due to the viscous effects of
the fluid, the fluid particles at the wall surface will be assumed
stationary with respect to the wall., The velocity and temperature
variances as one travels away from the wall are as shown in the
figure. The points at which the velocity and temperature of the
gas reach 99% of their freestream values describe the boundary
layer edge; the two points (one for temperature and one for veloc-
ity) will be ass' ~d to coincide spatially at every point along
the body. The maximum boundary layer temperature is called the
"recovery' or "adiabatic wall" temperature and is defined as the
fluid temperature where the derivative with respect to the local
wull normal (3T¢/3y) 1s zero.

Predictions of the aerodynamic heating as described so far
involve calculating the recovery temperature and estimating the
proper dependence of the convective flux (q) on the recovery tem-
perature. In the discussions that follow, the basic relation
shown below will be used to define the heat flux per unit area to
the solid surface:

q, = h (1, -1), (8)

where

hi is a heat transfer coefficient that will relate heat
flow to a difference in enthalpy,

1r is the enthalpy of the fluid at the recovery tempera-
ture, and

iw is the enthalpy of the fluid at the wall temperature.
Enthalpy, a valid material property, is defined as
i = u + pv,

where u 1s the internal energy, p the pressure, and v the
specific volume (reciprocal of density). Enthalpy is, in general,

-12 -
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Freestream condition

Density — p
Viscosity — Zoco Shock wave for compressible supersonic flows;
Temperature — T, implies local fluid properties that will depend
Pressure —~ P on coordinates X, Y and body shape
Velocity ~ Ve, y (See detail below, left)
Externai surface of body
Veo First internal nodes

Body coordinates

Boundary
Y{ layer edge

=
e

Local flow condition = Velocity (V)
~ Temperature (T

Local coordinates
/Y’/ Boundary layer edge
Heated surface at T, )
X 5,99 V, Velocity

Two thermal nodes with similar local flow Boundary
at boundary layer edge layer edge

i

For a heated wall

For an adiabatic wall

T Fluid temperature, T¢
Tw Ty 'recovery

Fig. 1 Terminology for Asrodynamic Heating Boundary Conditions
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dependent on temperature and pressure. We will assume knowledge
of the fluid properties, including enthalpy versus fluid tempera-
ture (T¢) and fluid pressure (Pg), so that it remains to calcu-
late hi and the recovery enthalpy. In the following discussion
the fluid will be assumed to be a gas (usually air).

With a compressible fluid as the medium there is the possi-
bility that the freestream velocity is larger than the acoustic
velocity in the gas and a shock wave may be present in the vicinity
of the wall surface being considered, If this is the case, the
local boundary layer edge velocity (Vi) must first be calculated.
This caiculation involves a priori knowledge of the ratio of pres-
sures across the shock wave as well as the ratio of Mach numbers.
(The Mach number (M) ia the ratio of actual gas velocity to the
acoustic velocity of the gas at any point.) Purther, the distance
from the shock wave to the local body position and the shape of
the body have effects on the Mach and pressure ratios mentioned
here. In other w isg,

PlfPo - f(uo.x) and (9

M /My = g(Myex) (10)
with x 1indfcatring the position along the body, 1 indicating the
local condition, 0 indicating the freestream condition, and the

other items as shown in Fig. 1. Since energy is conserved across
a shock wave, the folloving equation will hold:

2 2
v v
*1*“%‘"0*“'3" ’ (11)

whi~h simply suns the sensible and kinetic energies on either side

of the shock wave., 1f the gas is assumed to be ideal except for a

comprassibility factor (2) defined as
Z = pv/RT,

*

then the sonic veloecity (a) can be shown to be

am= \’YQZRT ’ (12)

where

y is the ratio of specific heats (cp/cv) for the gas,
which are defined as




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL, MAE(LAND

s T R S e s ee.

[~

cp = d1/dT and
c, = du/dT .
The gas properties y and Z will be assumed to be known as func-

tions of temperature and pressure. Using the above acfinitions
Eq. (11) is written as

2 2
(4%, RT. M \'
1717171 1
11 + 3 io + 5 (13)

With knowledge of the freestream conditions of temperature and
pressure, the gas properties i, vy, Z, and the functions indicated
by Eqs. (9) and (10), Eq. (13) is seen as an implicit equation in
Tlo i

When Eq., (13) is solved for T}, the local flow conditions
are then fully defined and the recovery condition is next con-
sidered. The recovery temperature within the boundary layer must
lie somewhere between the total temperature and the local boundary
layer edge temperature. Thinking in terms of enthalpy instead of
temperature this notion is expressed as

1= +r 5, (14)

where r 1s the recovery factor, defined as

Tr - TO
T B e . (15&)
T - To

To determine r it is necessary to resort to empirical correla-
tions of measured data. Reference 1 states the following relation~
ship for r:

r = ¥V Pr* for laminar flow (15b)

Ref. 1. R. E. Wilson, Handbook of Supersonic Aerodynamics,
Sections 13 and 14, "Viscosity" and "Heat Transfer Effects,"”
NAVORD Report 1488, Naval Ordnance laboratory, White Qak, MD,
August 1966.

- 15 -
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ot
r = \3’ Pr* for turbulent flow, (15¢)
where Pr* is the Pramdt]l number of the airstream evaluated at the
refereace temperature (reference denoted by *) and the Pr number is
Pr = Cp u/k ’
u being the viscosity. We have now traded one unknown for another;
that is, the recovary factor is defined in terms of another un-
known condition — the reference temperature (T*). The reference
temperature is a fictitious boundary layer temperature that is used
to evaluate the physical properties of the stream. Eckert (Ref. 2)
proposes the following relationship for determining the reference
condition in terms of enthalpies:
2
R =
e i (,+1,+0.22r v, ye , (16)

which is seen to be an average of enthalpies and a kinetic energy
factor. Equation (16) now involves the recovery factor so an ex-
plicit solution for r from Bqs. (14), (15), and (16) cannot be
made; the relationships must be solved simultaneously.

The results uf solving Eqs. (14) through (16) are the
reference enthalpy (i*) and the recovery enthalpy (i,). By use
of the fluid property tables the reference and recovery enthalpies
can be used to obtain the reference and recovery temperatures (T*
and Ty, respectively). At this point we can turn to heat trans-
fer correlations to evaluate the hy of Eq, (8). The Stanton num-
ber is defined as

St = 1 - i ’ (17)

Ref. 2, E. R. G. Eckert, "Survey of Boundary Layer Heat
Transfer at High Velocities and High Temperatures," Technical Re-
port 59-624, Wright Air Development Center, Dayton, OH, April 1960.

- 16 -
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and Colburn (Ref. 3) notes that

St = ¢, (Pr*)B . (18)

The term c; is the friction factor and is further defined as

TW
R (19)

where
Ty is the stream shear stress at the wall surface,
B, 1s 32.17 f-lbm/Ibf-s”, and
8' is an empirical constant.

Experimental correlations (Refs. 2 and 3) have shown that

é

ce ™ ¢ Re” s (20)

where C and o' are again empirical constants, and Re is the
Reynolds number (pVyx/u). Combining Eqs. (17), (18), and (20)
gives

h ‘

[
S a «B
o, C Re~ Pr . (21a)

Using the definitions for Re and Pr, and the following for Nusselt
number:

Nu = (cp x hi)/k R

Ref. 3. A. P, Colburn, "A Method of Correlating Forced Con-
vection Heat Transfer Data and a Compariron with Fluid Friction,"
Trans. AIChE, Vol. 29, 1933, pp. 174-210.

-17 -
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the general relationship

B

Nu = C Re” Pr (21b)

can be w;itten where the constants o and B are different from
a and B and are given values according to Table 1.

Given the position on the body (x); the previously calcu-
lated values for Ty, 7%, and V;; and the stream property func-
tions; Eq. (21) or (2la) is soiV9d for hy and Eq. (8) 1s used to
find the heat flux to the wall (qy,).

In summary, the following steps are required to calculate

.

qw:

1. Know 1, 2, v, Pr, and u for the stream fiuid versus
T and P;

2. Know the Mach and pressure ratios (Eqs. (9) and (10))
between the freestream and the local boundary layer
edge;

3. Calculate the local boundary layer edge static tempera-
ture (Tl) from Eq. (13);

4. Solve for the recovery factor (r), recovery temperature
(Ty), and reference condition (T*) (Eqs. (14), (15),
(16));

5. Using properties at the reference temperature, solve for
hy using Eq. (21); and

6. Substitute hy, i,, and i, in Eq. (8) to solve for éw'

Whether the laminar or turbulent coefficients in Table 1 are used
depends generally on the value of the Reynolds number; low Re im-
plies laminar flow and high Re implies turbulent. The transition
value of Re must be decided a priori.

In the case of heating of a surface that is normal to the
freestream (i.e., stagnation points) the methods of Squire and
Sibulkin are used (Refs. 6 and 7). In these techniques it is

Ref. 6. S. Goldstein, Modern Developments in Fluid Dynamizg,

First Edition, Vol. 2, Oxford Univ. Press, Londov, 1938, p. 631.

Ref. 7. M. Sibulkin, "Heat Transfer near the Forward Staz-
nation Point of a Blunt Body," J. Aeronautical Sciences, August
1952.

- 18 -
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pcssible to show that if t... square root of the stream velocity
gradient at the stagnation point is “incorporated in the constant
C (Teble 1) then proper correlation with measured data is ob-
tained. In these stagnation point heating cases, it was foun?
that the term

4
Vorad v'o/v,

was required in the constant C of Eq. (21) where
v/ is (3V/3y)|y = 0, or the velocity gradient of the
stream evaluated at the wall (c.f. Fig. 1),

D is the characteristic diameter of the body, and

vV, 1s th freestream velocity.
The dependence of V' on Mach number has been derived for a real
gas using Newtonian flow assumptions, This plot is given in
Fig., 2 and will be required for use when stagnation point heating
is being considered.

The aerodynamiz heat transfer relationships discussed above
are solved in the SAERO routine where the final result is simply
the temperature for the surface node in question. The tomperature
is solved for by making an energy balance at the heated surface
per unit area as follows (c.f. Fig. 1):

where:

érad is an independently specified heat flux to the
surface,

Tw is the wall temperature,

écon is the heat conducted from the surface into the
material below the surface,

g is the Stephan-Boltzmann constant (see the follow-
ing section on radiation heat transfer), and

€ iz the total normal emissivity of the wall surface.

- 20 -
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O o Experimental data
26 © o —40
0
20 32
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> s 2
!
3 |
>a-,, 1.0 Vgrad, Newtonian theory 16
05} 8
| ] |
0 0 1 2 3 4 5 0
Mach number, Moo
Fig. 2a Stagnation Point Velocity Gradient Function Comparison
of Newtonian Theory with Experimental Data
1.2 T T T T T T T 17 600
‘/Vgrad, Perfect gas
1.0 -\\ — 500
\
Varad. Real gas —
o, 308} grad. Fieal 92 400
>|>
fl
06 300
|4
> 04 Altitude = 100 000 ft — 200
P/pg,
0.2 —{ 100
0 A i | | 1 | | ] L ] ] 0
6 7 8 9 10 11 12 13 14 15 16 17

Mach number, Moo

Fig. 2b Real Gas Effect on Stagnation Point Velocity Gradient Function

- 21 -




THE JORNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL MARYLAND

In this relationship, &w (the aerodynamic heat transfer to tae
wall) is explicitly related to Ty through the enthalpy iy, (c.f.
EqQ. (8)). Qpaq 1s independently specified and is therefore a con-
stant at any instant in time. T* is an obvious function of Ty
and Ggop depends on Ty, as follows:

qcon " kw (Tw - Ti)/Lw-i i

where T4 is the inner wall temperature within a node at a distance
Ly~y from the surface. The energy balance equation above is then
seen as an implicit equation in Ty, if it ia assumed that Ty is
known. At each time increment in the transient solution technique
the temperature Ty from the previous time point is used so that the
conduction equation just above can be solved for q.on and the en-
ergy balance equation can be solved for Ty.

At thi-. point we will also note that the solution for r,

o Ty, and T* (Eqs. (14), (15a), and (16)) is made an explicit rela-

tion in the same way as the internal conduction equation. That

is, the term r (Eq. {(15a)) is used from a previous time step so

; that iy (Eq. (14)) and i* {Eq. (16)) are found without the need
for a simultaneous solutZon of the three equations.

HEAT TRANSFER — RADIATION

Every substance at any tempevature above absolute zero
emits electromagnetic (EM) wave energy that will cause heat to be
absorbed by any other surface upon which the energy impinges.

Heat 1s, on an atomic level, a measure of the intensity of molecu-
lar vibrations. The molecules in a sclid are groups of positive
and negative electrical charges so thcir vibration at a surface
will cause EM radiation. Conversely, EM waves of the proper fre-
quency impinging on a surface will excite the molecular vibrations
of that surface. In 1879 Stephan observed the following relation-
ship for the energy flux radiated by a body at temperature T with
a perfect surface (that is, a surface that emits the EM radiation
without loss):

E, = oT . (22a)

Equation (22a) was also theoretically derived by Boltzmann and is
termed the Stephan-Boltzmann law; o is the Stephan-Boltzmann
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constant. For real surfaces, the amount of energy radiated is
less than the amount given by Eq. (22a) and an emissivity factor
(¢) is generally incorporated:

B, - cor® . (22b)

The subscripts b and g 1in Eqs. (22a) and (22b), respectively,
represent "black-body" (perfect) and "grey-body" (imperfect) sur-
faces, respectively. Because solid bodies are aggregates of
molecules that are subject to the laws of quantum physics and
quantum probabilities, the energy emitted at a particular tempera-
ture will be distributed over a wide range of wavelengths; 1i.e.,
the surface molecules vibrate over a range of frequencies. In
1900 Plank derived the following relacion for the energy emitted
at a specific wavelength by a body at a temperature T (c.f.
Chapter 5 of Ref. ()

cA™

- 1
Epa exp(C,/AT) - 1 ° (23)

where C; and C are constants. Equation (22a) is then seen as an
integration of Eq. (23) over all wavelengths; i.e.,

L] L]

4 AT
E, = ol = / Epadh = €y / exp(C, /) - 1 LA

0 0

The implication of Eq. (23) 1is that for real surfaces the
emissivity may, in general, &xhibit a dependence on A and T
since a surface could be more emissive at one wavelength than an-
other.

For a surface exposed to the EM radiation from another hot
body the fraction absorbed (a) is related to the fraction reflected
(r) and transmitted (1) by a simple expression of the conservation
of energy:

Ref. 8. F. Kreith, Principles of Heat Transfer, Second Edi-
tion, Section 5, International Textbook Co., Scranton, PA, 1965.
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at+ T+ =1

where
a 1s the absorptivity,
T 1s the transmissivity, and
r 1s the reflectivity,

all of which may depend on T and A.

In practical situations where radiation heat transfer is
significant, the range of temperatures are such that the wave-
lengths of the FM energy involved are roughly between 0.5 ¥ 10-6
and 20 x 1076 m. This EM waveband is termed the infrared (IR)
bard. A simplifying assumption that will be made here is that all
real materials ha values of r, €, and o that are constant
over the IR band and can depend only on the temperature of the
G surface. Further, the so called grey~body assumption will be
made; that is, at a given temperature the emissivity of a material
will be equal to the absorptivity. Given these assumptions, the
net exchange of heat energy between the two surfaces shown below
can be described.

SO

Let T1 > T2

. it is desired to know the net heat flux per unit area
(qpet) across the imaginary plane spaced between the two given
planes. This flux will be the total radiated heat per unit area
from the surface at T} less the heat radiated from the surface at
T9 plus a consideration for the energy reflected at each surface.
In algebraic terms:

- 24 -
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- 4 4 o 4
qnet eoT1 ecTz + (1 h)EOTz

- - weort + ... 28

+ (1 - a)2 eoT 4 9

(1 ~ a)eoT 4 1

1

The first two terms are the primary radiation terms, the third
term represents the heat radiated by surface i but reflected at
surface 1, the fourth term is the heat similarly reflected from
surface 2, and the successive terms represent the continuing re-
flections that proceed indefinitely. Equation (24) can be simpli-
fied to:

(-]
. - 4_ 4 4 - n ,_.\0
q eofr,* - 1,0 4 1, Z(l O (-1)

net
n=1
[ -]
- Tz“z a-o® -0t o, (25a)
n=1
nr
[ ]
N - 4 _ 4 _ 10
iy = €0 (T1 1, )Z - on (-1 . (25b)
n=0
The infinite sum is equal to:
n n 1
Yoa-ot ent-gie (26)

n=0
Using the assumption that o = ¢, and

4 4

-3
, ¥ 4 T ('1'1 - Tz) ,
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then Eq. (25a) becomes

-3
o - €T - 9
Yet "2 -5y Ty - T » (27a)
=3 2, .2
where T ('1’l + TZ) (T1 + T2 )

If we now consider the distance between the surfaces (d)
and rewrite Eq, (27a) as

. - edfad lef‘ TZ) (275;
et |2 - & d ’

then the term in the square brackets can be regarded as the "ef-
fective" thermal conductivity of the space (d) between 1 and 2;
ioec Y

qnet - keff 4

with

. - eo?3d

“eff (2 -€) ° (27¢)

The above treatment is for parallel, infinite plates but
similar analyses can be done considering the geometrical differ-
ences for arbitrary surfaces and the result is to add another fac-
tor called the view factor (F) to Eq. (27b); i.e.,

=3
coT F
kett "2 - &) (274)

Values of F have been tabulated for various conventional surface

arrangements; Ref. 8 gives some typical values.

- 26 -
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While Eq. (27d) gives an effective conductivity for a
linearized temperature function, Eq. (25b) could just as well be
written

. u 4 _ 4)
Inet = Ceff O(Tl T |
with

€afs ™ e/(2 ~ €).

ef

In Section 2 of this volume the solutions to these rela-
tionships will depend on having the values e.¢s mentioned above
supplied a priori.

THERMAL STRESSES

Subroutines in URLIM can calculate thermal stresses in
arbitrarily defined cylindrical wall sections. The method em-
ployed is that of Rivello (Ref. 9) and is briefly described here.

A cylinder of infinite length subdivided into n concentric
cylindrical sections i3 shown schematically in Fig. 3, Also shown

in Fig. 3 is a definition of the terms used in this discussion.
The following assumptions are made:

1. The elastic modulus relating the stress in the material

to the strain is constant within each region.
2. Poisson's ratio is constant throughout all regions.

3. The materials that may make up the cylinder are iso-
tropic.

4. The cylinder is restrained from motion in the axial
direction; t.e., the axial strain is zero at all
values of r.

5. The radial distribution of temperature is known at all
values of radius,

Ref. 9, R. M. Rivello, "Thermal Stress Analysis of Sand-
wich Cylinders," APL/JHU TG 721, August 1965.
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NOTES:

eTotal wall thickness (b4 — bq) is divided into n arbitrarily sized reyions,
creating n+1 interfaces.

eTemperatures are provided at m arbitrarily spaced radius values and are constant
with respect to the axial and circumferential directions.

e Radial displacements from an initial isothermal state occur for ea.ch interface, u;-

eMechanical properties are assumed constant within regions at values that are
temperature averaged with respect to the radial temperature variance.

Fig. 3 Thermal Stress Geometry and Nomenclature
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If T(r) is the temperziure at radius r and Ty is the uniform tem~
perature for the cylinder at which no stresses are present then

T = T(r) - Tg will define the variable T in the following devel-
opment.

The radial displacement of any point within the ith region
of the cylinder in Fig. 3 due to the temperature gradient T 1is
(from Ref. 10)

r

C

1tV 1 i,2

U "1y : f (aT)r dr + Ci,l r+ ---'-—r . (28)
b

i

The radial (r), tangential (6), and axial (z) stresses are given
(respectively) as

r

-E E c c

oo tT=N 7 f emrespiy ohE-E o
i LI r

i

0 1-v 2 v
r

r
E1 1 (uT)Ei
g, = (aT)r dr - 1= +
1 b
i

E C C
i—%—;(-l—%-‘%; + "'1"5'2‘) s and (30)
r
. .- (aT)Ei N 2\)1".1C1,1 1)
2 1 -v Q+vQ-2y) °

i

In these equations Cy ; and Cy 7 are constants of integration that
apply to the ith region.

Ref, 10, S, Timoshenko and J. N. Goodier, Theory of Elastic-
ity, McGraw-Hill, New York, +951.
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The coefficient of expansion has been brought under the
integral sign in writing these equations since it is always per-
missible to consider aT (the unrestrained strain due to tempera-
ture) as a single quantity. As a resuit & need not be constant
over the range of temperature changes.

Since there are n regions,a total of 2n constants of inte-
gration must be found. These constants are determined so that
equilibrium and compatibility are satisfied on the faces and inter-
faces of the layers. Equilibrium on the inner and outer faces
requires that

o - (32)
i+1

and

g

rfy ® Payr 0 (33)

nt+l

where p; and p,4; are the pressures on the inner and outer faces.
At each of the interfaces the equilibrium condition,

o = g y, 1=1lto(n-1), (34)
r r
i b i+l b

i+l i+l

and the compatibility conditionm,

u " U] , iw1lto(n-1), (35)

1 b+l

bi+1

must be satiofied, Substituting Eqs. (28) and (29) into Eqs. (32)
through (35) gives

P, (1 + V)
1 ) 1 1
C - = C . - . (36)
( 1,1 bl2 1,2 E,
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1 . . ~n P
(1_ Zv)cn’l PRyh SR et SR
n+l W) n
L Ve ol o . hm__oo o,
T-2v/ 7,17 (27,27 BT - D) 14,1
1+1
E A
i+l 7 Cipy g = L+ V) 1 53 1%1,2, .00, (a-1), (38)
E,(b,..) i (b,.,)
1141 1+1
and
1 1
C. .+=—C, ., ~C - —
1,1 b 1,2 7 41,1 2
1+1 (by )
A
"N - (1 + V) —-—'—'7 ; i’l,z,o..,(n"l) ’ (39)
(byay)
where
1 Lwe)
Al =T f (aT)r dr . (40)
5

Solution of the 2n simultaneous equations generated by
Eqs. (36) through (40) gives the C; ; and C coefficients. Sub-
stitution of these into Eqs. (29) tﬁtough (%1; yields Opy» Op» and
Ozy for restrained ends.

The resultant axial force for restrained ends is
L 290}
R = 2w }E: {J/. ¢ rdr ,
zy
i=) bi
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which, by using Eq. (31), becomes

1 E, Di+1 2vEC 2141
R = -2n - / (GT)rdr-(1+v)(lf2v) r dr .
i=1 bi bi
From Eq. (40) we find
n
vE,C
R 1°1,1 2 _ .2
" 2 2 E A -G 9aA - v [“’m) by ] @D
i=1 /

To determine the axial stresses for unrestrained ends we determine
the stresses due to an axial force of -R and superimpose these upon
the previously determined stresses. The stresses due to -R can be

shown to be
o - - E;}- ¢ w () -
2 n ’ Oe ’ Or 0 .
: " E E, |(b )2 -b 2
d J[ i+l h|

i=1

In the ith region the radial and circumferential stresses for un-
restrained ends are then given by Eqs. (29) and (30). The axial
stress is

aTEi ZvE!Ci 1 . Ei(R/w)

TN T AEFYa-w T e

' Z J [(bm)2 - bjz

i=1

. (42)

[o ] -
4

The thermal stresscs as developed here are used in the
URLIM program to evaluate the thermal stress failure levels of

- 32 -
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radomes. An obvious further assumption is that the region of
critical stress in the radome behaves like the cylinder modeled
here. Studies by others (Ref. 11) have shown that if the point

of interest on the radome is sufficiently far from the ncss re-
gion, then the cylindrical assumption is sufficiently accurate
(i.e., less than 10% error). It is worth noting that the radial
dimensions that comrare between the cylinder and the radome should
be made along the local normal to the rademe profile and not along
the radius of revolution of the radome profile.

BORESIGHT ERRORS

The prediction of boresight error rates for radar transmis-
sion through streamlined radomes is regrettably imprecise. This
situation is due in large part to the number of significant varia-
bles involved, such as radar frequency, antenna design, antenna
placement within the radome and incidence angle variations, ra-
dome shape, the magnitude and temperature dependence of the radome
dielectri-~ constant, and the transmission loss of the material.
Theoretical prediction techniques that are sufficiently general
and complete are consequently quite complicated. To add tc the
confusion, the prediction techniques often do not correlate well
with observed data (c.f. Section 8 of Ref. 12). Therefore, the
philosophy of the radome error prediction method used here is
based on experimental radome data. Interpolation of the avail-
able data is made to determine the empirical equation that de-
scribes the effects of antenna aperture size, dielectric constant,
wall thicknese, and wavelength changes on a theoretically perfect
room~-temperature radome design. An attempt is also made to in~-
clude the effects of missile dynamics on error slope requirements
by averaging the experimental radome error over a fixed 20° gim-
bal period. Before a discussion of the boresight zrror analysis
is given, a brief account of the radar power loss due to trans-
mission through a radome will be given.

Transmission Losses

A radome must pass electromagnetic radiation =2£fficiently.
A reduction of radome transmission efficiency degrades the coverall
range product or effective noise figure of an airborne radar.
Definition of a radome limit from transmission loss requires

Ref, 11, R. M. Rivello, "Comparisons of Radome Stress Solu~
tions," APL/JHU EM-3989, August 1965.
Ref. 12, L. B. Weckesser et al., "Environmental Limitations

of Alumina, Fused Silica, and Pyroceram 9606 Radomes," APL/JHU
TG 865, May 1967.
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knowledge of target size and missile-~target space geometries.
The limitation of a radome from a transmission loss analysis is
very vague since transmission losses simply reduce acquisition
range, It 18 conceivable that very large transmission losses
(2 to 3 dB) could be tolerated during a homing mission and not
degrade target intercept. An increase in radome transmission
losses is caused by three phenomena:

1. A change in electrical thickness that produces a reflec-
tion loss,

2. An increase in the loss tangent of the radome material
that produces an absorption loss, and

3. Distortion of the antenna aperture illumination that
changes the antenna gain (this change may produce a gain
rather than a loss).

Laboratory experiments at room temperature on a Pyroceram
C-band radome verified that reflection losses were less ihan 1 dB
over a 10% frequency bandwidth. The ratios of the square roots of
the dielectric constants of Pyroceram to alumina and to fused
silica are 0.76 and 1.31, respectively. Using these ratios, 1-dB
loss bandwidths for alumina and fused silica are estimated to be
7.6% and 13%, respectively. Thus, reflection losses are less than
1 dB for relative radome design changes of less than 3.8%, 5%, and
6.5% for alumina, Pyroceram, and fused silica, respectively. Also,
it has been found that absorption loss (in dB) of a half-wave ra-
dome (normal incidence) for loss tangents (tan §) of less than 0.5
can be approximated by 13.65 tan 6. This expression indicates that
tan § can be as high as 0.05 before 0.7 dB of absorption loss is
realized. Therefore, in this study we may safely assume that ra-
dome transmission losses will have little influence on the electri-

cal limitations.

Angular Error Prediction Method

An analytical methed was developed for predicting the ra-
dome angular error slope (e) during flight. This method is based
on well-known mathematical relations and experimentally determined
conetants. The experimental and mathematical characteristics as-
sumed for the radome model are listed below:

1. The radome has a von Karman shape with a length-to-
diameter ratio of 2.1.

- 34 -
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The antenna is an ll-in.-diameter, four-quadrant array
with an effective phase-center separation of 3.89 in.

The RF bandwidth 1s zero; i.e., single-frequency opera-
tion.

The radome has been corrected to have zero error slope
at room temperature.

The basic thickness of the corrected radome in wave-
lengths is
d -1
XQ - (2 € ~ sinZB) R (43)
0

where

B = tan-l\,eo = Brewster's Angle,

dy 18 the room temperature radome wall thickness,

Ao 1s the center design, free-space wavelength of
incident radar, and

€g 1s the room temperature dielectric constant.

The worst-case average error slope occurs in the gimbal
region through the radome¢ nose and is linear between
+10°. This average error slope is derived from experi-
mental data by averaging the worst-case angular error
over *#10°%; i.e.,

€
max
20°

= Ae o

The worst-~case angular error slopes are associated with
polarizations parallel to the plane ol rotation; i.e.,
the E-plane,.
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gﬁ~ 8. Radome transmission losses resulting in lower receiver
sensitivity do not degrade mimsile homing performance.

9. A change in electrical thickness is directly related
to a change in angular error slope; 1i.e.,

w-Zn%Jeo-sin¢

(y 18 the electrical thickness of the radome;
¢ is the radar incidence angle).

Laboratory measurements at C, X, and K bands have indicated
that angular error magnitudes are approximately inversely propor-
; tional to the antenna diameter in wavelengths or to interferome-

ter gain. Also, other laboratory investigations with a low-di-
electric-constant radome sandwich design have been made (Ref. 13)
and the results indicate that angular errors are generally lower
over a broadened frequency band for materials of lower dielectric
constant. In particular, data obtained on a C-band Pyroceram
radome and a two-ply sandwich wall radome indicated that the ir-
provement in frequency bandwidth is approximately proportiona. to
the ratio of the square roots of the dielectric constants of the
two radome designs. A mathematical expression descyibing these
results is

by
de ., (Dielectric Constant Function)® Ay
€ (Interferometer Gain) wo '

Ref. 13, R. H. Hallendorff, "Wideband Radome Antenna Re-
search," Section 3/9, '"Research and Development Quarterly Report,"
APL/JHU U-RQR/64-3, July-September 1964.
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which can be written as

AqJe. ~ 1
de _NO — &y (44a)
e 41 D v, ?
0 EF) 0
0
or
B\/e -1
pe m ——O2— A¥ (44b)
D v
2 0
0

where D 1is the antenna diameter and B = Aeg/4m. The €y term in
the numeratoer of Eq. (44a) 1s included for converging the error
magnitude to zero for the case of a radome material having a rela-
tive dielectric constant of 1. The constaut B in Eq. (44b) was
determined empirically from error slope data taken at C-, X-, and
K~band frequencies on Pyroceram radomes. Experimental average
angular error slopes occurring through the radome nose were de~
termined as a function of frequency and plotted as a function of
percent change in frequency (Af/fp). The center frequency (fp)

ig defined as the frequency where the error slove through the nose
equals zero.

Figures 4, 5, and 6 show the typical change in experimental
average error slope through the nose as a function of percent
change in frequency for a constant-wall half-wave radome. The
K-band data of error slope versus frequency change shown in Fig. 5
are estimated from boresight error measurements that were made on
a full-wave (two half-wave thicknesses) and a third-order (three
half-wave thicknesses) radome using a pair of standard-gein horns
with a galn approximately 10 dB down from that expected from an
11-in.~diameter antenna. Also shown in these figures are straight
line approximations to the experimental data. The slopes of the
experimental functions generated in Figs. 4 and 5 are shown to be
equal to:

Ae
|slope| = ‘2?7?;‘ or AW/WO = N . (45)
2 0

Ae B\fco -1
A
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Fig. 4 C-Band Boresight Error Slope versus Percent Frequency Change
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Fig. 5 X-and K-Band Boresight Error Slope versus Percent Frequency
Change
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Fig. 6 Comparison of Error Slope Magnitudo versus Recipracal of Antenna Aperture
Size in Wavelengths (2)9/D)! (Pyroceram 9606)
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The numerical expression derived from experimental data for use
in the radome analysis is

he = 1.615 A -—-g—--——-“i deg/deg (46)
Yo

where a = D/2. An increase in crror slope (Ae) can be determined
from Eq. (46) for a given change in electrical thickness (Ay/¥q)
once the frequency (wavelength), relative dielectric constant, and
effective phase center separation (a) are known.

What remains now is to caleulate Ay/yg for the radome wall
as a function of trajectory time. To do this the wall is assumed
to be divided into m subsections through the thickness. Any
single section (n) is considered to have its own value of electri-
cal thickness (yq):

2nd 3
‘pn - by 1 \’en - 8in"¢ » (47)

and the average electrical thickness of the whole wall is:

m

-l
u’avg m Z Vn (48)

n=]l

The relative electrical thickness change is then

Ay - wavg B wO - wavg -1
LinLy \le + tc - sin’ Ad 1 |
0 en sin ¢ 1 a0 \ '
= 3 —+T -l . {49)
n=1 € sin'¢ " 0
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(Eq. (49)) is calculated using the same wall thickness divisions
used for the thermal stress analysis in subroutine SIGMET. The
result is made available to routine MOBSER where Eq. (46) is

F
; In the URLIM program the electrical thickness change
!
|
| solved for the boresight error.

‘ AERCDYNAMIC LOAD

During the flight of a missile, considerable aerodynamic
pressure and skin friction can develop on the radome because of
its high speed and angle of attack. Also, during maneuvering to
the target, high lateral and angular accelerations can be devel-
oped, causing inertial forces in the radome structure. Calculat-
ing the magnitude of these forces ana the resultant stresses is
important in radome dezsign in order to determine the limitations
of the radome and hence the missile. The calculation procedure
is designed to be applied at all times during the flight of the
miszgile. Moreover, if the calculations are done over a variety
of trajectories that cover the missile's propulsion capabilities,
| then the mechanical load limits for the radomr can be accurately

stated.

vornnd  veed ol ennd  cmmel emed  emewd emeed !

The present analysis of mechanical loads on a radome con-
siders forces caused by axial and normal pressure drag, axial
friction drag, normal (or lateral) and axial accelerations, and
angular accelerations. Figure 7 is a schematic of a radome with
the various forces listed that can act at any time during a flight. i
FNr oand Fy, are the normal and axial aerodynamic forces acting oa
the radome ard are shown acting at the radome's center of pres-
sure (cp). The inertial forceas are showm acting at the center of
mass of the radome, my. The sum of these fo-ces can be resolved
into forces and momente acting at the baze of the radome {point O,
Fig. 7). These forces in turn cause stresses in the walls of the
radome that can be calculated from knowledge of the radome's base
radius (RB) and wali thickness (t).

\»-\-wj

Figure 7 is a schematic of a radoye 9uring flight with three
coordinate systems. Coordinate system X ,Y 1is inertial and fixed
to the earth; system X,Y is centered at the center of mass of the
missile and is aligned at any instant with the flight path (i.e.,
X is along the velocity vector and Y 1is perpendicular to it). j
Lateral maneuvers are considered tc be along the Y-axis. The
third coordinate system (X,y) is Jcrated at the radome's base and
is fixed to the missile body; i.,e., it is aligned with the missile
axes, x along the centerline and y perpendicular to the centerline
at 0. All directions shown in Fig. 7 are positive.

«
Yoot
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X',Y'= Coordinate system attached to ground

X,Y — Coordinate system along and perpendicular
to velocity vector of missile at center of mass of
missile N 2
X,y — Missiie body coordinate system located at base
of radome ("'O"j

———

e

Fig.7 Coordinate System and Forces for Radome Mechanical Load Analysis
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During the flight, the aerodynamic pressure and friction
forces act on the radome with a magnitude and direction that is
dependent on speed (Mach number) and angle of artack (a). For
various shapes, these forces are tabulated in coefficient form
and are divided into axial (x-direction) and normal (y~direction)
components, as

F
C. = —_ N , (50a)

Nr 2
(YOPOMO /2)A

and
F
C = —Ar , (50b)

Ar 2

where C,,. and Cy, are the force coefficients for the radome in the
axial and normal direccions, YoPMa2/2 is the dynamic pressure of
the stream with static condition of pressure pg, velocity (Mach
number) Mo, and specific heat ratio yp; and A is the area of the
base of the radome. These component pressure forces are said to
act at the center of pressure (cp) where their effect on the ra-
dome 18 resolved into the component forces with no moment. The
location of this point itself depends on Mach number and angle of
attack and may be rositioned away from the body centerline. As
shown in Fig. 7, the location of the center of pressure is defined
by xcp and ycp. Refecence 14 18 an excellent source for these co-
efficgents for several nosecap shapes. For the present analysis,
the center of pressure is assumed to vary only along the x-axis
and to have no displacement from the centerline (i.e., Yep ™ 0).

During an engagement, the missile's control system will re-
quire rapid changes in the flight path direction. To accomplish
this, the missile will change its angle of attack to provide suf-
ficient 1ift for the maneuver. The present analysis considers
only lateral accelerations caused by angle of attack changes in
the X,Y plane, At some angle of attack during a manauveyr, the
rate of change of angle of attack may be quite large. Dynamic
simulations of various missilc configurations are available to sup-
ply these values. The causes of inertial forces that can be con-
sidered to be acting at the center of mass of the radome are

Ref. 14. E. T. Marley and H. Ginsberg, "Supersonic Pressure
Distribution and Axial Force Characteristics of Axisymmetric Noses
at Angle of Attack," Paper Presented at the Seventh U.S. Navy ym-
posium on Aeroballistics, 7~9 June 1965.
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Lateral acceleration: mr§,

o

Axial acceleration: m.X,

Angular velocity: myR (a +'9)2.

Angular acceleration: mgR (a + e), and

Radome mass: meg.
These forces are shown in Fig. 1 acting in positive directions.
The resultant forces at the base of the radome and moment

about point 0 are found to be

Fx = FAr + m, [g sin (a + 6) + X cos a

+Y¥sina-R (a ¥ 6)2] ’ (51a)

F = -F r + m [g cos (a + §) - X sin a

y N
+ Y cos a + R( a + 6)] , (51b)
MO - -FNr xcp + mrxmr [g cos (o + 8) - X sin a

. b

)! ’ (51c)

_.__...)‘

+ ¥ cos a + 3 (a +

These stresses caused by the forces are distributed around
the base of the radome and are maximum either at the top (y=RB) or
at the bottom (y=-RB) or the radome's base. These stresses are

M F

0 X
Oypn ™ - , and (52a)
y=RB n(RB)zt 2n(RB) t
-M F
. 0 X
O o nn ™ - ‘ (52b)
y=-RB L RBY’t  2n(RB)t
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The angle of the missile's velocity vector with the local
horizongal (8) is often called the quadrant elevation. It is de-
termined from the trajectory information input by the user, namely
the altitude and velocity as functions of time. In the brief deri-
vations that follow it will be assumed that the altitude and ve-
locity are known at two points along the trajectory; i.e., Z] and
V, are known at tj, and Z3 and V; at tj. Further, it is assumed
that the vertical acceleration of the missile (Z) is constant dur-
ing the time interval t - t; and that the quadrant elevation does
not change (i.e., 87 = 8 = 8). If Z 41s constant, then

and
, 2
VAR (CI/Z)C + Czt + C3 .

At the two times tj and tj, four relationships may be written:

2=V, sin 0 = Cit, + Gy (53a)

Z, =V, sin 6 = Cit, +C, s (53b)

22 - (01/2)t22 + Czt2 + C3 » and (53¢)

z, = (C1/2)t12 +Cpty +Cy (53d)
Equation (53a) may be rewritten as

02 = V1 8in 6 - Clt1 ) (53al)
and substitution into Eq. (53b) gives

V2 sin 0 = Clt:2 + Vl sin 0 ~ cltl . (53b1)

- 46 -
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If we assume tj = 0, so that ty will now represent the time inter-
val between points 1 and 2 then Eq. (531) becomes

C3 - Z1 ’ (53d1)
Eq. (53bl) becomes

V2 gin 6 = Clt2 + V1 gin 8 , (53b2)
and Eq. (33c) becomes

% 2

Z2 - tz + (Vl sin 9):2 + Zl . (53cl)
Equation (53b2) may be rewritten as:

¢, - (V2 - Vl)(ain 6)/:2 . (53b3)
Substitution of Eq. (53b3) into Eq. (53cl) gives

8 = sin | 2, - 2p) (54)

tZ(V2 + Vl)

The solutions to Eqs. (5la), (51b), (51c), (52a), and (52b)
are obtained by the use of Eq. (54) in the AERLOAD subroutine and
provide attachment stresses as a function of trajectory time in
the URLIM program.
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2. NUMERICAL METHODS

TRANSTENT HEAT CONDUCTION

Consider a body divided into N mass lumps (nodes) as
shown below:

.
]
!
E
/
K

N il B e
.
.
°
.
®
[ J

In general, any node n may be connected thermally to any number
of other nodes. To determine the temperature of any node (T' )
due to Fourier conduction within the material at some time in—
terval away from an initial starting time, the following equation
is solved for T'y:

‘ K
pvncP(T n Tn) - - [ kn“i An"i (T -T (55)
(t" - t) L n 1) ’
l {=1 n~-i
where
p is the density of the material,

Vn 18 the volume of the node,

- 49 -
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ﬁg%' cp is the specific heat of the material,

t is time (t being thc current time and tf being the
| time in the future),
| kn-i is the thermal conductivity between n and each

connecting node 1,

A - is the area perpendicular to heat flow between n
n and each connecting node 1,

L - is the distance between n and the connecting
n nodes 1, perpendicular to A,
T is temperature (T' being at t', T being at t), and
i K is the total number of directly connecting nodes.

| The left-hand side of Eq. (55) represents the chagge in internal

| energy of the node n during the time intarval t - t. The

‘ right-hand term of Eq. (55) is the net heat transferred to or

A from the node by all the nodes it is in contact with. Equa-

b tion (55) is, moreover, the finite difference approximation to

Eq. (4a) derived earlier in this volume (Chapter 4 of Ref. 15

also contains this derivation). The right-hand side of Eq. (55)

5 can have additional terms which include other modes of heat trans-
fer between nodes as well as the application of boundary condi-
tions for external surface nodes. The equations listed below de-
fine how these additional modes of heat transfer are calculated
within the program,

Radlation Term

R
&R =9 Z Fre1 An-i en-i(rnl{’ B Tia) !
i=1
where
] 1s the Stefan-Boltzman constant,
F is the view factor from n to {,

n~-1

Ref. 15, G. M. Dusinberre, Heat-Transfer Calculations by
Finite Differences, International Textbook Co., Scranton, PA,
1961,
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€1 is the infrared emissivity factor from n to i, and

R is the total number of nodes radiating with node n.

Constant Flux Terms

/"

Q
" *u
d Z Y -1 Ane1
i=]
where:
q" _1 is :he independently specified ilux between n and
n the independent source 1 per unit area, and
Q" is the rumber »f independent sources.

Convective Flux

Convective (aerodynamic) heating is a boundary condition
that is solved for implicity by the SAERO subroutine and therefore
does not enter into the nodal temperature solution being described
here. Convective flux boundary conditions can be specified by the
user or as many surfaces of the thermal model as are desired.

Internal Generation

Cw

a, " £(t) ,

where

q is the heat generated within node n due to indepen-~
dent phenomena (e.g., nuclear fission, Joule heating,
chemical reaction, Peltier effect, etc.), which may
be time dependent.

Sclution Technique

The transient so}ution for N nodal temperatures requires
choosing a time step (t - t) and solving the N equations of the
form of Eq. (55) for all values of gjn. The N temperatures are
stored in the subscripted variable T (dimensioned from 1 to N);
each right-hand side of Eq. (55) is combined into the subscripted

- 5] -
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variable 5' (dimensioned from 1 to N), and each pVuc, 18 stored
in the subscripted variable C (dimensioned from 1 to N). The
N equations are then rcduced to:

| T =T-@/C) (¢ ~¢), (56)

where the bar indicates a vector of dimension N.

For completeness, and to appreciate the nonlinearity of
Eq. (55) or (56), it is noted that the coefficients in these equa-
tions are dependent on the temperature of the node; i.e., k, €,
‘ and c, are treated as functions of temperature. If k = f(T) in
general, then for Eq. (55):

) Tt

{ k_, = £l , (57)
' \a

|

|

D SN P W S

and if ¢ = g(T) in general, then

Tn + 'l'i
zn-i = 8 ——-—2—"— . (58)

The special case of two nndize of differing materials (hence dif-
ferent k functions) cennected together through a contact re-
sigtance is handled by the COMCON subroutine, which evaluates the
following equation:

owad mcd W WX Y WME IR

C
qc¢ - z ch (Tn - Ti) ’ (59
i=]

il

where

Kl'(kﬂb *i‘*&Aiw . (59a)
ce n |n-x 2 i x-1
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Subscript x denotes the location of the interface between
nodes n and 1, and

Tn+ Tx
kn " f1 2 i

k2 = fz(Tx), the thermal conductance of the contact, and

T + T
K, = f,| Xt
1" hB\T 7 ]

Implied in Eq. (59) is a solution for Ty that is carried
out by subroutine COMCON and is based on the fact that the inter-
face has no thermal capacity (therefore all the heat conducted to
one side of the contact is completely conducted out at the other
side).

, The transient solution is obtained by choosing a time step
(¢t -,t) and solving all N equations of the form of Eq. (56)
for T . One must be careful in choosing the time step so that the
solution will be numerically stable. The rule for choosing a time

step is
C
At = 0.9] MIN — , (60)
n=1,N
Z Hn-i
i=]

where Hy-i is the net conductance between nodes n and 1 and
can be composed of conduction and/or radiation terms:

k A
o p-i_n-i 2 2
H ——~——Ln~—-—_1 + o(eFA)n_i(Ti + 'rn)(ri +T ) .

MIN( ) represents a choice of the minimum value of all N such
values. (The N values of IH,.4 are stored in the vector H
within the computer program.) Equation (60) can be viewed as a
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statement of the second law of thermodynamics; that 1s, for the
node in the network with the combination of smallest thermal
capacity (C,) and the largest total thermal conductance (IH,_4),
the amount of heat that would flow out of the node during At if
all surrounding nodes were at 0°R would not cause the tempera-
ture of that node to be less than O°R. Algebraically, the rela-
tionship can be seen by letting Ty and T'n approach 0 in Eq. (55).
In Eq. (60) we have arbitrarily taken 90% of this minimum to en-
sure stability.

In the computer prograri, the STEP routine computes At and
the nodal temperatures via Eqs. (60) and (56), respectively.

Orthogonal Geometries

The fundamental heat conduction equation was described in
Section 1 of this report. 1In those discuscions, the spatial coor-
dinate system used in the partial differential equations was re-
quired to be orthogonal. When the partial differential equations
are approximated by difference equations (e.g., Eq. (55)) proper
care should be exercised to see that the nodal network (i.e., the
geometry) is orthogonal. In Eq. (55), orthogonality is incorpo-
rated in the two terms A,-4 and L.y, where A 1s a "contact"
area between adjacent nodes, and L 18 the distance perpendicu-~
lar to A between node centers. In coordinate systems with
natural curvature (cylindrical and spherical, for example) the
simple A/L approximation is not correct bucause the effects of
curvature are ignored. In the following derivatives, the partial
differential equations will be writteu and the characteristic solu-
tions for steady etate will be obtained for two adjacent nodes.
The appropriate correction terms will then be identified.

Cylindrical Nodes

Considering heat conducted in the radial direction only in
the steady state, the Fourier heat equation (c.f. Eq. (2)) is
written as

At 1ar,
arz + r or o .

If p = dT/dr, then by substitution and allowing the partial deriva-
tives to be total derivatives,

dp/dr + p/r = 0 .

- 54 -
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Further, if p 1is of the form p = dT/dr = C/r, then

T(r) = Clnr+0D,

where C and D are constants to be determined by the boundary
conditions depicted in the following sketch:

the inner node center

is at r,
the outer node center is at r,

two conditions in the above

In the sketch the nodal interface
is at ry with temperature Ty, and
with temperature T,. Using these
equation for T(r) w!ll yield:

(T, - Ti)
T(r)’To+m-r—o7?;)-(lnr~ln ro) .

The heat conducted through the nodal contact is given by

q(r) = -A(r) k VT

- 55 -
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K

where V 1s the gradient operator (c.f. Eq. (6)) and reduces to .
dT/dr in this unidirectional case. A(r), the ‘unction relating
crogs-sectional area to radius, for the nodes shown is

A(r) = (e1 - ez)rz R

where 2z 1s the depth or axial dimension, and 6] and 87 are the
angular locations of the node centers. When the above relation-
ships for A(r) and T(r) are substituted in the equation for q(r)
the following equation results:

) - ~2 (El,- 02) k(To - Ti)
q 1n (rO/ri) :

Comparing this equation with Eq. (55) will reveal that if

An-i (61 - 62) z

- L]
L, In(c]/r)

then proper consideration for the cylindrical curvature will have
been made, The curvature effect derives from the cross-sectional
area having a dependence on the coordinate perpendicular to the
area. In cases where the area is invariant in the direction of
heat flow (rectilinear coordinates, for example) no "correction"
term will be required.

For conduction in the circumferential direction in a cy-
linder (i.e.; in the 8 direction), the following partial differ~
ential equ’~ion 1is written:

which simplifies to

dT/dée = C ,
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or

T(8) = C6 +D ,

where C and D are again constants of integration determined
by the boundary conditions sketched in the following figure:

Ug

o 01 \\
Vo
N . W - :

The heat conducted circumferentially between the nodes in the
sketch 1s given by

: 121
with

A(6) = z (r0 - ri) .
hence

(ro - ri) z [T(ez) - T(el)] k
Y (e2 - el)

q(e) =

- 57 -
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where r 1is the average radius, or the radius of the node centers;
i.e.,

re= (ro + ri)/Z

In this case the term (r, - ry)z 4s the cross-sectional
area and r(8; - 6;) is the path length between node centers and
there is no correction term. This is as expected because there
is no variance of the area normal to the circumferential direction.
By a similar argument, the axial cylindrical direction will have
no correction term associ.ted with {it.

Spherical Nodes

In spherical geometries the coordinate system consists of
(a) the co-latitudinal angle (¢) measured from the pole of the
sphere with positive radial values (i.e., the "North' pole);
(2) the longitudinal angle (0) measured as projections in the
equatorial plane; and (c) the radial distance (r) measured from
the center of the sphere. In the nodal sketches that follow,
these directions will be illustrated for clarity,

Considering only conduction in the co-latitudinal direction
at steady state, the Fourier equation is

d%1/de? + ctn ¢ dT/de = 0 .
If we let dT/d¢ = p = (. csc ¢, then

dp/dé + ctn ¢ p = 0 , (61)
by substitution. Also,

dp/d¢ = -C csc ¢ ctn ¢ ,
so that by substitution in Eq. (dl),

-c8c ¢ ctn ¢ + ctn ¢ ca8c ¢ = 0 ,

- 58 -
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which is an identity and verifies the choice of p = C esc ¢.
Hence,
dT/d¢ = C ¢sc ¢ ,
and
T(¢) = C In (tan ¢/2) +D ,
where C and D are integration constants determined by the

boundary conditions described next. The sketch below shows two
spherical nodes emphasizing the co-latitudinal coordinate (¢):

In the following, T, = T(¢1), Ty = T(¢2),and the node centers are
located at (¢3, r, 8) and (¢, r, 8), where 6 is the average
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meridional coordinate ((8; + 62)/2). The area normal to the ¢
direztion is given by

2 2
sin ¢ (r " ~1r,") (8, - 8.)
AGO) = et -2 L,

where r, is the radius of the outer surface of the nodes and r; is
the radius at the inner surface of the nodes; hence o~ ry 1s
the radial thickness of the nodes. Using only the ¢ direction
terms for the spherical gradient operator (c.f. Eq. (7)),

q(¢) = -A(#) k (1/r) d1/ds.

The previous relationship for T(¢) combined with the boundary con-
ditions will give

ar sin ¢ (T, - ?ll_

do * (cos ¢2 - cos ¢1) *

Q.

Combining the A(4) and dT/d¢ relationships will yield

~(r_ ~-r,) (6, -6,) k (T, - T,)
. 0 i 21 2 1
Q(O) - tan (02/2) ’
In | tom (01/2)

giving an effective A/L in the ¢ direction of

éI - (to - ri) (62 ~ 0,.)
L s tan (¢272)] )

In f4on ,70)

When considering only heat conducted in the radial direc-
tion, the divergence of the temperature field (T) for spherical
geometries can be reduced to
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& a®1/ar® + (2/r) dr/dr = 0 .
To find T(r), let p = dT/dr, so that
dp/dr + 2p/r = 0 .

Further, if p = C/rz, then by substitution in the previous equa-
tion

-2ce? + (2/r) /ey =0,

which is an identity, verifying the choice p = C/rl = dT/dr. OUne
integration »f this relationship gives

] i T(r) = (-C/r) + D ,

where C and D are constants determined by the boundary condi-
tions imposed as illustrated in the following sketch:

b4
4

4

-
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In the sketch, two spherical nodes are in contact at radius r
and have node centers at r, and ry. The temperature (which de-
pends only on the dimension r) is T, at r, and Ty at ry. Sub-
stituting these values as boundary conditions gives

ce2”h
A U U
LY
and
a0 N h
dr 1 1 )
i raday
1 02

The area normal to the radius direction is given by:

2 .
A(x) = " (cos ¢1 cos ¢2) (82 - el) .
The heat conducted across the area at radius r is then

4(r) = -A(r) dT/dr

i (cos @1 ~ cos OZ? (62 - 61) k (?g;- ?_l
1 .

- — W p——

l'l t2

By inspection with the rectangular case, the effective A/L for
this condition is:

) (cos 01 - cos ¢2) (6g - ?_1
T 1
r

>

tl )

When the only dependence of temperature is in the longitu-

dinal direction (6) then the divergence operator on T yields

- 62 -
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2
csc ¢ 2—%-- 0,
20

which reduces to
a%1/d8% = 0 ,

and is identical to the rectangular case., Moreover, it is apparent
that the area perpendicular to the 6 coordinate does not vary with
6 as can be seen in the attendant sketch:

From the simple form of the divergence of T (stated above), by

inspection
T, - T
dT/d6 = -e'-z—-:—-e—l-
2 1
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‘

with Ty being the nodal temperature at 61,and Ty being the nodal
temperature at 6. The coutact area between the nodes is at §;

~

the area perpendicular to the & coordinate is:

2 2
(4, = 6 (2 - 1D

A9) = 5 :

and the heat conducted through this area is then

k dT

ORENORrrard 1

(9 = &) (r, = x))

$, +¢
1 2
sin ( 3 ) (62 - 91)

k (T T,) .

21

The term in brackets is seen ae the actual A/L for the meridional
direction 1f r = (ry, + ry)/2, ¢ = (41 + ¢2)/2, A 1is given by
A(8) above, and L is the arc length (r sin ¢) (6, - 81).

In summary, by taking proper consideration for curvature
in cylindrical and spherical coordinate systems, effective A/L
formulas have been derived that should be used in the finite dif-
ference equations for heat conduction. The terms derived reduce
to the correct partial differential equations in the limit of in-
finitely small differences.

STEADY~STATE TEMPERATURE FIELDS

Iterative Solution

In the steady state there is no change of temperature from
one time to the next g0 that T = T 1in Eq. (56) and we have no
net flow of heat at any given node; i.e.,

Q=0, (62)

vhich states that the net heat flow for each node must be zero.
Solving the steady-state problem thern involves finding the set of

- €4 -
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tenperatures (T) so that Eg. (62) is satisfied. Since all of the
individual terms that comprise Eq. (62) are temperature dependent
(c.f. Eqs. (57) through (59)), then Q 1is a function of T; {i.e.,

Q = F(T) . (63)

Newton's method for finding the zeros of a function can be
used to solve this system of equations in the following way: If
an initial guess for T, say Tp, is substituted in Eq. (63), then

66 - F(Tb) $0 . (64)

A set of correction terms (Eb) will exist so that ?b - Eb = T and

F(T) = 0,
or

F(To - 60) =0 . (65)

Equation (65) is expanded in a Taylor's series as

_ _ _ o ’6"02 F//(‘,ITO)
F(TO - 60) = F(TO) - 60F (TO) t——— - e =0, (66)

where the primes indicate derivatives with respect to temperature.

It 1s assumed that the initial guess (Tp) is sufficiently
accurate so that the corrections (8p) are small. Further, the
second and all higher derivative terms are assumed small compared
with the first derivative term. With this assumption Eq. (66) is
solved for ép:

(67)
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Because of the approximations, Eq. (67) can be written as

_ F(’fo)
5o —2 (68)
1 r (Tg)

and moreover,

(69)

where‘gl is an approximation to the true correction terms (Eb),
and T; 1s an approximation to the true steady-state temperatures
T. Combining Eqs. (68) and (69) yields:

- - _— =
T, =T, - [F(To)/F (To)]

- T

Ty - QO/Q 0 (70)

An iterative process can be devised wherein each set of
temperatures Tl are substituted back into Eq. (62), new values for
F(Ty) and F (T1) are used in Eq. (70) to find a further improved
set of temperatures (Tz) The process i{s repeated in this manner

until the corrections (61) approach zero and the_steady-state heat
flows (Q) equal zero. Error tolerances for the &) values on the
order of *1°R nave been used successfully in practice; the precise
value 18 selectable when the program is executed.

To accomplish the steady-state solution in this manner, it
is required to have an initial guess (T ) and to evaluate the _N
correction factors (QQ/Q 0). The heating rate for each node (Q)
is calculated as discussed above for the transient solution and
the derivatives (Q') are calculated as follows:

- 66 -
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a Conduction
i . K
9q
< _ .9 kA -
9T " 9T Z Ll (T, = Ty
1=] n
K K
3k
kA A n-1
- )% ~1+Z CRERE I R G
i=] n i=] n n
Radiation
9q R
R 3 4 4
aT ° oT 2:: Fn-i n-1 ‘n-i (Tn Ty )
AT i=]
R
3
- .~ F
¢ Z -1 2a-1 n-1 4T
1=1
R
4 4\ d¢
| * Z Fi-t 4n-1 (Tn Ty ) - N (72)
im] n

External Fluxes and Internal Heat Generation

Qll
P 2 T m

i=1 - 3q .
ST 0 and =0, (713)

by definition.
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Composite Conduction

C
3 E ch ('1‘n - Ti)

c c
9q oK
ce i=1 - —Lc
aT_ aT " E (Tn Ti) o * Z Kee (74)
n n {=1 n i=1

It can be seen from Eq. (57) that

£ +
g £y By ¥ T2 -

oT 2
n

and similarly, from Eq. (58),

9 4 _ £, (T +T)/2 76

aT 2
n

With Eqs. (59a), (75), and (76) substituted into Eqs. (71)
through (74), the iterative process implied by Eq. (70) may be
carried out to arrive at the steady-state temperature distribution.

Usage experience with this iterative solution technique has
been varied. In general the following cautions are offered
(1) The number of iterations required for solution depends strongly
on the initial guess for the temperature field (Tp); (2) the
larger the number of nodes, the more iterations will be required
and the smaller the probability of satisfactory convergence; and
(3) a constant relaxation factor (described below) may improve con-
vergence speed and solution accuracy.

Relaxation Factor

A provision has been added that allows Eq. (70) to be
written as

—

Tl - To - R\QO - Qo) . an
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where R 1is a constant relaxation factor. Simply stated, values
of R greater than 1 tend to accelerate the convergence to
solutions that otherwise require many iterations and values of R
less than 1 tend to damp succer 2ive solutions to problems that
tend to oscillate. Oscillation cau be characterized by successive
values of § being positive and then negative, and not diminishing
in absolute value. The proper choice for R 18 a subject of ex-
tensive mathematical significance and is generally found by experi-
ence (i.e,, trial and error).

The foregoing comments serve to indicate an inherent unde-
sirability in the iterative technique just described — its unpre-
dictable behavior. To avoid this, another scheme is available —
the implicit technique — and is described next.

Implicit Technique

The right side of Eq. (55) describes heat transferred via
internal conduction, but there also may be radiation transfer, as
well as independently specified external heat fluxes or internal
heat generation. Terms such as these enter Eq. (55) either as
constants or terms that may have some dependesnce on Tp. The spe~
cific form of these terms is described above for the transient
solutions. It will be sufficient for purposes of description to
examine the internal conduction term as written in Eq. (55) and
note that che other terms mentioned simply add to the coefficients
in the zquations that will be developed.

Note that in the steady state, '1"n equals T, (there is no
change in .temperature with time) and the left side of Eq. (55) is
zero, Equation (55) is expanded to

) ¢ K

k A k A

n-1i n-i n-i "n-i -
E L Tn - E N Ti 0. (78)
1=1 n-i iw] n~1

For every node in the network an equation of the form of Eq. (78)
can be written. For boundary nodes whose temperatures (Ty) are
known, Eq. (78) is not relevant and the following form is used:

Tb = constant . (79)

- 69 -




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

For a constant flux or internal heat generation boundary condition,
the heat flux is simply added to the left side of Eq. (78) as a
constant. It should be noted that in the case of convective heat
fluxes a separate subroutine (SAERO) uses an implicit technique to
solve for the surface temperature. Therefore, as far as the nodal
network solutions are concerned, convective surface temperatures
enter as equations such as Eq. (79). It is now clear that for a
network of N node points, N equations of the form of Eq. (78)
can be written. To find all N unknown temperatures requires the
simultaneous solution of this system of equations. Written in
matrix form the system of equations is

!q. No.

~ - - - -
1 &y &y S CoC e e Coy | T, 0
2 Cu G Ciy ¢ v e e G .. Gy 1, 0
3 €y 2 Gy s Can Ty °

. X}, 1=

® C, ¢+ o G T, 0
b 0 0 0 0 0 0 0 0 0 1 0 0 0 Tb Constant
S T TR TR N W I T

The above system shows noder 1 through N as regular inter-
nal nodes, a boundary node with value Tp, and node N with an ex-
ternally supplied heat flux (Qgy.):

It should be noted that the off-diagonal coefficients are
symmetric; i.e.,
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and that the diagonal coefficlents are

K
C = - 2 : kn--:t n-1i
nn st Ln-i

The solution technique used to solve these simultaneous
equations 18 Gaussian elimination with back substitution. In this
technique the equations are algebraically manipulated so that the
coefficient matrix is reduced to upper triangular (i.e., 1's oc-
curring along the diagonal with all zeros below the diagonal).
This is accomplished, tor example, by: (1) dividing the first
equation by Cy;; (2) multiplying the new equation 1 by -C21 and
adding the result to equation 2, thus producing a zero for C21;
(3) dividing the new equation 2 through by the new C32:. Proceed-
ing in this manner through all N equations produces the upper
triangular coeff.cient matrix, Note that at the end of this pro-
cedure, the last equation (N) will read

Eq. No.
. 1 L] x L] - L]
N-1 0 CN-I.N TN-l
N 0 0 1 TN value

which says Ty = value. This result can then be substituted into
equation number N-1, and Ty.j can b2 solved for. This back sub-
stitution procedure can be followed up through the reduced equa-
tions until all N temperatures are known.

While this technique requires the storage of the N x N co-
efficient matrix, usage has shown that solutions are achieved much
quicker and are generally more accurate than the iterative scheme
described earlier.

It should be mentioned “hat the implicit technique is also
used iteratively; i.e., successive solutions to the temperature
field are compared and convergence is judged according to the suc-
cessive differences. Since the values in the coefficient matrices
are temperature dependent, successive coefficient matrices will not
in general be identical until the temperatures themselves do not
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change. Generally, the number of iterations required is small
(less than 10).

INTERPOLATION TECHNIQUES

In arriving at the transient or steady-state temperature re-
sponse of a thermal network the routines in URLIM make extensive
use of numerical interpolation. Because all of the pertinent mate-
rial properties are allowed to have temperature (and sometimes pres-
sure) dependence, these functional relationships must be modeled.
The technique employed here is the most simple and direct; the
functions are represented by tables of independent and dependent
variable values and linear interpolation is most frequently used.
The table look-up procedure most often employed is a simple serial
search. In general, the tables can be as long as required to ac~
curately define the particular function. Search time will in-
crease with increases in tabular length. The following discussinn
will outline the techniques used by the URLIM interpolators. The
PIF1, PIF1D, and DSCIDE routines in particular use the following
scheme .

GEE TN O o W e

Let the independent variable be represented by the vector
of N values X and the dependent variable by the vector of N
values Y with the functional relationship between the values
expressed as.

an S e

Each value in Y, Y4 has a corresponding value in X, Xy so that

Yi - f(Xi) R

and each pair Xy, Y4 is a point on the curve

y = £(x)

1f a value of x 1s giver (xp) and the corresponding value of
Y (yg) is required, then a search is performed through the values
X until two values are found:

- 72 -

G 25 ARG T Wt et e o aaad U UEEN




| THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL MARYLAND
ﬁ; Xi < %0 <Xy

Note that the vector X must contain values in monotonic increas-
ing order. When the two points that satisfy the inequality above
are found the value yg is computed as

Y - Y
i+l i
Yo = Y ""'("""‘"—':“““)(X - X ) .
0 i xi+l Xi 0 i

In the cases where xg < Xj or xg > Xy (where Xy is the last tabu-

lar value in the vector X) linear extrapclation is employed using
the two given end point values.

The routine LINLCG uses a modified version of the same
method described above. In this case, after the two tabular
values X; and Xy4)] are found the corresponding values Y; and Yy g
are replaced in the calculations by ln (Y;) and ln (Yi41), re-
spectively. The returned value yg is then

InY -1lnY
i+l i
V. = exp |1In Y -f( - )(x - X )} .
0 [ i Xi+1 Xi 0 i

This result is then a semilogarithmic linear interpolation. For
values of y that are negative, the sign is retained anc the 1n
function is performed on the absolute values of X. In the spe-
clal case of the value of either Yy or Yy4; lying between +1 and
-1, the logarithmic functions are suspended and simple linear in-
terpolation is performed.

In the BIVLID routine, the functional dependence of a
varisble on two independent variables is modeled. In this case
the two independent variables x; and x, have monotonically increas-

ing values stored in the vectors i; and §$ with individual values
Xai = X5 and ij = X+ The dependent variable y 1is defined as

y = f(xz,% ) and is represented in the two-dimensional array Y.
The subscripts 1 and j are used to index the array Y (e.g.,
Yi,j = £(X3:Xp)). The subscript i 1is used to index the vector

X, and the first index position of the array Y; similarly, the
subscript j _1is used to index the vector Xp and the second index
position of Y.
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_ When values of x, and xy are given, BIVLID scans the vec-
tors X, and Xp, respectively, until the following conditions are
satisfied:

(1) X <x <X .
S L FS |

(2) X, < < .
b, % xbj+1

The above conditions define 1 and Jj uniquely. In the case
where x5 < Xal, i is set to 1. Also when x5 > Xan, where n

is the extent of the vector X, then { 3is set to n. Exantly
analogous conditions hold for the vecto: Yy and j.

With the values 1 and J established, two intermediate
values of the dependent variable are found:

Y ~Y
‘. 1,441 1.1 -
1 Yi’j+(xb "% )(xz xbj)’
RS E5 | 3

. Yorr, 441 ~ V41,4

s )

The required value of y 1s then computed as

Y, - ¥

- ' O A S Ur— -— .

y(x,x,) = ¥y + X - X ("1 xai)
1+l 3

The BIVLID routine also returns either of the partial de-
rivatives of the function y depending on the value of a control
code. In the example shown above the derivative would be
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Ay - 2 1
Bxl Xa - X )
i+1 i

Similar expressions to the ones above can be written for cases
where By/ax2 are required.

The routine has a facility for returning a value for one
of the independent variables when values for the depender:it vari-
able and the other independent variable are supplied., This func-
tion is termed an "inverse' interpolation and is useful in cer-
tain applications. In this process if the value x5 is given along
with the valve y(xg,xp), then the value x'p, is returned. The
vector X, is searched until

xa <£x <X ’
1 8 844

thereby establishing the value of 1 and two vectors of dependent
values, namely Yy , and Y47 x. A series of intermediate depen-
dent variable vaiues are then found between these two vectors;
1030’

Y -y
¢ i+1,4 i, _
L Yi,j+( X_ - X )("1 xai) ’
1 84

and

Y -y
p 141,441 7 1,4+l
= + 2 -
YotV ( X - X )("1 xai) '
4441 Y

such that either

‘ L 4
(1) Y 1 = Y(xlnx 2) < Y 2 ?

or

{ ¢ ']
(2) Y 1 2 y(xl,x 2) > Y )
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When either of these conditions is true, then a value for the in-
dex J will be imp}icitly known. The returned valie of the de-
pendent variable (x 2) is then given as:

y(x ,xl ) - Y‘
x’2 B xb + - ¢ . - xb
i v, - ¥, j+l

A similar procedure can be outlined when the values y(x 1:%2)
and xp are given and x’ 1 is desired.

If the conditions (1) and (2) are not satisfied after all
values of ] are used, then the dependent variable value that
was given lies beyond the tabulated values. In such cases, the
routine will generate an appropriate warning message and return
the last tabulated value of the required independent variable
(i.e,, Xam or xbn. where m (or n) 1is the extent of the vector

Xg (or Xp)).

In cases where the dependent variable is double valued
(L{.e., there is more than a single value of j that satisfies
the conditions of (1) or (2) above), then the smallest such value
of 3 will be used,

When the data being used for interpolation have an inher-
ent logarithmic dependence, a linear-logarithmic interpolation
may be obtained in much the same way as done for the single inde-
pendent variable data in LINLOG, discussed earlier. For these
cases the BIVLLID routine is used, which has the same basic algo-
rithm as discugssed above for BIVLID. The logarithmic aspect is
accomplished by using the logarithm of the dependent variable
values rather than the values themselves, In other words, where
Yy j 1s used in the relations above, ln (Yy ) is substituted and
the returned values are the antilogs of the ’Yesultant values.

INTEGRATION

Within the thermal-stress routines (SIGMA and SIGMET) nu-
merical integrations are required of various tabular functions.
The process is accomplished by the TRAP routine and essentially
evaluates the integral I, which i1s defined as
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The function F(x) is assumed represented in tabular form (i.e., a
vector of independent variable values (X) and a corresponding vec-
tor of dependent variable values (Y = F(X)).

The algorithm divides the interval {a,b] in half and the
three functional values y; = f(a), y; = £((a+b)/2], and y3 = £(b)
are found by interpolation. The integral I 18 now approximated

by the area under the three-point function via the trapezoidal
rule; 1i.e.,

I = (yl + YZ) (b - a)/4 + (y2 + Y3) (b - a)/4 .

& The interval [a,b] 1s now divided into three parts and the values

y, = £,

-

<
[\
]

£f(2a + b)/3,

f(2b + a)/3, and

~
W
[

f(b)

are determined by interpolation. The integral is approximated

again by the trapezoidal process and is called Ij. At this point
the value E = 1 - |I5/13] is compared with a preset tolerance value
of 0.01. If E > 0.01 then the interval is divided into fourths, the
approximation I; is generated via the trapezoidal rule, and a new
value of E = 1 - l13/14| is compared. This process is continued
until either E £ 0.01 or 20 such iterations have occurred. If,
after 20 iterations, E is greater than 0.0l then an appropriate
message is printed, the ratio Ipg/Ijg is printed, and the value

120 18 used as the value of the integral.

SIMULTANEOUS AND IMPLICIT EQUATIONS

Within the aerodynamic heating routines, there is a require-
ment for the solution to implicit equations (i.e., equations with
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terms or functions of the unknown variable on both sides of the
equal sign that cannot be solved in closed form). Also, in the
iterative steady-state solution procedure, a number of implicit
equations must be solved simultaneously. The numerical technique
used in both cases is Newton's method wherein successive correc-
tions are calculated for the value of the unknown quantity based
on partial derivatives. A complete description of this algorithm
is presented in the paragraph entitled "Steady~State Temperature
Fields" (Section 2).

The set of simultaneous equations generated in the implicit
steady-state method are solved by Gaussian elimination to achieve
an upper triangular coefficient matrix and the unknowns (tempera-
ture) are solved for by back-substitution. Again, this method is
described in Section 2 and will not be repeated here.
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3. DATA MANAGEMENT

EXTERNAL STORAGE

In the URLIM and SHTP subroutine library it has been found
useful to have a number of variables that can be accessed freely
among the subroutines. This class of variables is called EXTERNAL
in the PL/I language. Table 2 of Volume 2 of this report lists all
of the EXTERNAL variables used with brief descriptions. Since
EXTERNAL variables must have unique names, the list will serve as
a guide to future changes in the program that may require addi-
tional EXTERNAL variables.

DYNAMIC STORAGE

Many of the arrays of data stored by the URLIM routines
are of flexible extent; i.e., their dimensions are program vari-
ables and are changed as required from run to run. Many examples
are evident in Table 2 (e.g., the nodal temperatures (T) and the
steady-state coefficient matrix (HMAT). As might be expected,
the single most important value that determines the exient of the
various arrays is the number of thermal nodes (i.e., the value
of variable LASCAP). Subroutine STORE is the routine that allo-
cates the bulk of the required dynamic storage according to the
parameters passed to it. In establishing the storage limits that
will be required, one of the important aspects to manage is the
use by the READCP routine of 'node" numbers that are beyond the
value LASCAP. In describing the network data it is possible to
use an extended input technique that will require additional stor-
age (c.f., Appendix F of Vol. 1 of this report). When employing
this method, adequate storage must be allocated by the STORE rou-
tine through the parameter XCAPLIM., Further explanations can be
derived from the discussion of the STORE routine (Appendix H of
Vol. 1 of this report).

The use by the SIGMA, SIGMET, and MOBSER routines of nodal
temperature positions in the vector T must also be allowed for
if the plotting flag is set in the calling sequence to any of these
routines, This feature does not require storage additional to that
set by LASCAP, but it is imperative that the "ncde' number used for
the thermal stress values not be the number of a node in the network.

Another important data management technique employed within
URLIM 1s the use of POINTER variables to locate the storage of the
various material property tabl:s and the various time~dependent
tables. In the case of the thermal properties, the READKK routine
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stores the memory locations of the property data it reads into

the EXTERNAL POINTER variable PP, The values in PP are then made
available to the routines that require the thermal property tables.
Indexing with the vector PP is accomplished via the ID values sup-
plied to the READRK routine (i.e., the material thermal property
codes).

For the time-dependent variables read in by the READTM
routine, the EXTERNAL POINTER array TMPNTR is used to store the
locations of the tabular data. This storage information is then
made available to routines in the URLIM library for processing.
The indexing of TMPNTR, a two-dimentional array, is first by the
ID number used when read by READTM and then by the dependent
variable position in the calling sequence. To illustrate, con-
sider the following hypothetical call to routine READTM:

CALL READTM (ID#, TM, DEPl, DEP2, DEP3, DEP4, DEP5,
IENT, INFILE):

where the vector TM is the list of time values and the vectors

o DEP1 through DEPS are corresponding lists of dependent variable
values. Upon return from this call to READTM the storage loca-
tions of the variable T and DEP1 through DEP4 will be recorded
in the values of TMPNTX (ID#, 1 through 5), respectively.

The Initial Storage Area

One of the "optimizing" features of the PL/I optimizing
compiler is its improved ability to mauage the dynamic alloca-
tion of storage, according to the requirements of the particular
program. The computer code that supervises the allocation of
storage segments for a particular program is supplied automati-
cally by the optimizer compiler; the only item supplied by the
user is the specification of the amount of storage that will be
needed for the dynamic storage. This area is termed the initial
storage area (ISA) and has a default value in the present com-
piler implementation of 8000 bytes. For most programs, and cer-
tainly for the URLIM program, this is an insufficient size for
the ISA. Determining the proper ISA size is done with the aid
of the program-generated storage report that gives an accounting
of the actual storage requirements and the number of times stor-
age outside of the ISA was required. Figure 8 is a reproduction
of a typical storage report, the salient features of which are
discussed in the following paragraph,

In Fig. 8 the size specified for the ISA is given in bytes;
the amount of actual PL/I storage needed by the job is given and
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STORAGE MANAGEMENT REPOWT

ISaSI7E SPECTHIED 173)72 wYTFS

LENGTH
AMOUNT
AMOLUINT
NUHKE R
NU AHE K
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the amount of storage used outside o. the ISA is given. Further,
in cases where storage outside the ISA 1is required, the number of
requests to the system (0S) for such storage is indicated. In a
program with a properly specified ISASIZE, the amount of storage
required outside the ISA will be zero (i.e., the amount of PL/I
storage required and the ISA will be equal). To establish the
correct value of the ISA, an estimate of the proper size is made
and a report is asked for via the PARM field of the EXEC card for
the job. Upon receipt of the report, the correct amount of PL/I
storage required will be known, and subsequent runs should use
this value as the ISASIZE., If program variables that affect the
dynamic storage are changed between runs, the amount of proper
ISA storage may change. For this reason, it 1s generally good
practice to have storage reports made with each run and make ad-
justments to the ISASIZE as required.

INTERFACE WITH THE OPERATING SYSTEM

The machine configuration for the URLIM program code and
the SHTP subroutines is the IBM 360. The PL/I source was compiled
with the optimizer version of the PL/I compiler, All of the rou-
tines used by URLIM or contained in the SHTP library are available
as load modules. Also, the URLIM main program is available ~s a
load module. The extent of interaction with the IBM operating
system (0S) is then to properly assemble the required subroutine
modules and execute the program. The discussions that follow will
be applicable to the running of URLIM or to the execution of an-
other application program using the SHTP library, with the follow-
ing difference. For URLIM runs, the main program is already
written, compiled, and stored in a data set; for a run with SHTP
modules, the main program will be user-supplied and assumed avail-
able as a precompiled load module ready for use.

To further preface the following discussions, a general
description of the IBM 360 system environment will be made. OS
is fundamentally a supervisory program that oversees the 1lloca-
tion of the 360's basic resources, namely central processor unit
(CPU) time, main storage (region), and peiipneral storage devices.
Interaction with 05 is accomplished by writing statements in job
control language (JCL). These statements serve as preparatory
remarks to 0S in that they identify the job to be run and make
requests for some of the three aforementioned basic resources.
There are three fundamental types of JCL statements: (1) the JCB
card (containing user identification and accounting information)
that serves to identify distinct jobs to 08; (2) EXEC cards that
identify what program is to be run, and (3) data definition (DD)
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cards that identify the various files (data-sets) that will be re-
quired by the program. Requests for region (addressable storage)
and CPU time are made on the EXEC card.

At any given 360 installation there will be a set of pro-
grams that are used very frequently by many users. The attendant
JCL (which may be quite lengthy) is often contained in files known
as '"cataloged procedures.”" These high-ueage programs generally
include the IBM-supplied high-level compilers {(FL/I, Fertran, etc.),
the link~editor program, and others. The JCL described here will
include (1) that which is needed to use the link-editor and
(2) that which is sufficient to run a previously link-edited module.

The Link-Editor

The cataloged procedure OL used at the IBM 360/91 installa-
tion at APL is used to execute the link-editor; OLG is used to
execute the link-editor and then execute the resultant program.
The use of procedure OL 18 shown in the example below. OL is used
to assemble the required load modules together and save the re-
sultant, fully link-edited program on the file described by the

. L.SYSLMOD DD card:
//  EXEC OL,'LIB=BBE.FRAZER.BASICO2',
!/ PARM.L='LIST,MAP,LET’

] //L.SYSLMOD DD DSN=xxx.xxx.xxx{yyy),
// DISP=(NEW,CATLG),
// SPACE=(3156,(60,20,2) ,RLSE),
/l UNIT=SAVE

//L.SYSIN DD #
INCLUDE SYSLIB (URLIM)
ENTRY PLISTART

/*

The exawmple first names che cataloged data set BBE.FRAZER.
BASICO2 as the SYSLIB file for the link-editor. Next, the file
SYSLMOD is designated to be data set xxx.xxx.xxx(yyy) (i.e.,
member yyy of the partitioned data set xxx.xxx.xxx). Further, the
data set xxx.xxX.xxXx is to be saved via cataloging for later use.
The "PARM.L=" gpecifies operating conditions for the link-editor,
namely, that a storage map is requested (MAP) and will be printed
by the link-editor; that all input to the link-editor will be
listed (LIST); that the link-~editor shall continue its operation
even though an error mayv occur (LET).

The input file to the link-editor program (//L.SYSIN) con-

tains two instructions to the link-editor: (1) to include the mem~
ber URLIM from the SYSLIB data set and (2) that the entrv point
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(first executable statement) of the module is named PLISTART, a
name provided automatically by the PL/I optimizer compiler and
found with the main program. The member URLIM in this example is
the main program and will be looked for by the link editor as a
member of the partitioned data set described by the SYSLIB DD card
in the cataloged procedure OL. All subroutines called by the
URLIM program and all subroutines subsequently called are assumed
to be members of either the data set BBE.FRAZER.BASICO2, or of

the system libraries named automatically within the cataloged pro-
cedure OL. The link-editor's output (the complete executable pro-
gram) is written on the file SYSLMOD and the job is finished. The
SYSLMOD definitions indicate to the syatem that the file is to be
saved and cata’.ged for later use.

The interested reader will find further descriptions of the
link-editor program and descriptions of other ways of assembling
a complete executable program in Refs. 16 and 17. These other
methods include overlay defining to maximize storage use and ex-
cluding routines that are referred to but never actually called.

The procedure OLG is used in the same way as procedure OL
except that the completely executable program (stored on the
SYSLMOD file) is executed in a subsequent JOB step:

/l EXEC  OLG,LIB='BBE,FRAZER.BASICO02',

!/ PARM.L='LIST,MAP,LET',

!/ PARM.G='ISASIZE(11K),R'
//L.SYSLMOD DD DSNw=xx..xxx.xxx(yyy),
!/ DISP=(NEW,CATLG) ,UNIT=SAVE,
!/ SPACE= (3156, (60,20,2) ,RLSE)

//L.SYSIN DD *
INCLUDE  SYSLIB(URLIM)
ENTRY PLISTART
/*
//G.SYSIN 1) I
(input data, as required)
//G.READFIL DD DSN=xyz.abc,DISP=SHR

The PARM.G statement passes parameters to the executing pro-
gram and are described in detail in the preceding discussion. The
Input files required by the program are inclvded at the and of the

Ref, 16. "System 360 Model 9i User's Guide," APL/JHU BCS-1:40,

Noveuber 1973.

Ref. 17. "IBM 0S Linkage Editor and Luader," Eleventh Edition,

IBM File No. 5360/8370-31, Order No. GC28-6538-10, April 1973,
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JCL prefixed with "G.”" to irdicate the second job step (named
"G") 1in the same way &s the .ink-editor step files are prefixed
with "L."

Complete Executable Programs

Once a complete executable program has bien created (as de-
scribed above or by the use of other catalnged procedures), an
execution may be obtained by providing 08 <ith the proper time and
region requirements as well as the required file definitions (via
DD cards). The JCL given below is an example of what can be spe-

cified:
// EXEC  PGM=URLIM,
/] REGION=rrrK,
// TIME=tt,
/l PARM="'ISASIZE(111K) ,REPORT'

//STEPLIB DD DSN=xxx.xxx.xxx,DISP=SHR
//PLIDUMP DD SYSOUT=A

//SYSIN DD *

) (input data to follow here)

*

/ /READFIL DD  DSN=xyz.abc,DISP=SHR

In this example, the EXEC card specifies (via the PGM= state-
ment) the member within the PDS named on the STEPLIB card (in this
case the data set named xxx.xxx.xxx) that contains the completely
executable program. (This example 18 consistent with the examples
above for OL and OLG in that the names coincide.) The EXEC curd
asks for rrrK (rrr-thousand) bytes ("characters") of storage and
requests tt minutes of CPU time. [The time request can be speci-
fied in minutes and seconds as '"TIME=(mm,ss)"). Additionally, a
parameter is passed to the e.ecuting program as "PARM=,..." This
parameter specifies that the Initial Storage Area (ISA) is to be
111K bytes long and that a storage report is to be given. The
significance of the ISASIZE, and the interpretation of the REPORT
are discussed above in the section on Dynamic Storage. The
STEPLIB card names the data set containing the program to be exe~
cuted (URLIM in this instaance). The PLIDUMP file is the print file
onto which the REPORT will be written. The SYSIN file includes
inpvt required by the program and expected from the file SYSIN.

The READFIL file is indicative of how files other than SYSIN can

be used for supplying input data to the various READ routines (e.g.,
READRK). These routines, according to values supplied as argu-
ments, can read the required data iiom any file named by a DD
statement included with the JCL f¢ the execution of the jcb; the
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card "//READFIL DD ..." above describes such a file. Other spe-
cific examplos of these auxiliary files are given in the READ rou-
tine usage descriptions in Vol. 2 of this report.

This demonstrates the way in which an URLIM or SHTP program
module can be assembled and executed in an IBM 0S 360 system en-
vironment. There are other ways of accomplishing the same results
and the experienced user will experiment with and exploit such
avenues that prove beneficial to his needs.
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LIST OF SYMBOLS

Symbol Definition and Assumed Units

A area (ftz)
a sonic velocity (ft/s)
by radial position
T vector of heat capacity values for each node (Btu/ft3-°R)
CNr’ CAr normal and axial force coefficients for the radome
Cl’ C2 constants in Planck's equation (Eq.(23)) and others
Ce friction coefficient
<, specific heat (Btu/lbm-°R), equal to du/dt
cp specific heat (Btu/lbm-°R)
d wall thickness or length measure (in.)
D antenna diameter (in.); arbitrary constant
Eb black body irradiance (Btu/ftz-s)
Eg grey body irradiance (Btu/ft3-s)
Ei Young's Modulus of the ith subreglon (lblinz)
Ae/e0 boresight error slope (deg/deg)
Fue? FAr normal and axial forces acting on the radome shape (1bf)
Af/f0 percent change in frequency
Fx, F, resultant forcgs acting on radome in x and vy
‘ directions (ip1)
h1 heat transfer coefficient (lbm/ftz—s)
H the vector of total conductance for each node n
(Btu/h-°R)
I value of the general integral f F(x)dx
i enthalpy (Btu/lbm)
k thermal conductivity (Btu/ft-°R-h)
K the net thermal conductivity between two dissimilar
ce materials, including contact resistance (Btu/ft-°R-h)
K number of nodes connected to node n via internal

conduction
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length measure (ft)
Mach number

radome mass (1bm)

resultant bending moment acting at radome's base (in.-1bf)

Nusselt number, equal to cphix/k

Prandtl number equal to UCp/k

pressure (1bf/ft2)

heat flow vector (Btu/h)

magnitude of heat flow vector (|Q]) (Btu/h)
generalized heat flux term (Btu/ftz-h)
generalized heat generation term (Btu/h-ft3)

the number of independent heat flux sources exchanging
heat with node n

number of nodes connected to node n via radiation, or
relaxation factor

gas constant (ft-1bf/1bm-°R)
resultant force (1bf)

radome base radius (in.)
radial coordinate (ft)
recovery factor

reflectivity

Stanton number = ci/pV(ir - iw)
temperature (°R)

time (8 or h)

thickness (in.)

internal energy (Btu/lbm)
velocity (ft/s)

volume (ft3)

specific volume (lbm/fta)
spatial coordinates (ft)

coordinate axes or generalized functional values
(L.e., X = £(Y))

compressibility of a gas
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Greek Symbols

a

Q

[ i
a, o , B, B

Q a a A Q < T > o @@ o o o | <

-

absorptivity
thermal expansion coefficient (°R™1)
constants in heat transfer correlations
ratio of specific heats
gradient vector operator (ft“l)
error correction term (°R)
emissivity
dielectric constart
angular coordinates (rad)
quadrant elevation angle (rad)
wavelength (in.)
fluid viscosity (lbm/ft~s)
Poisson's ratio
Stephan-Boltzmann constant (0.174 x 10-'8 Btu/ftz-h-°R4)
fluid/wall shear stress (lbf/inz)
axial direction stress (lb/inz) )
)

circumferential direction stress (1b/in”)

radial direction stress (lb/inz)

electrical thickness of radome wall
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ERRATA SHEET FOR APL/JHU TG 12934,
URLIM — A Unified Radome Limitations Computer Program,

Volume 1 — Theoretical Background

1. Change Eq. 35 (p. 30) to:

u i=1lto(n-1) , (35)

il BTSN ’
Pyt

b 1

i+l

2, Change the third line of the paragraph following Eq. 40

(p. 31) to:

stitution of these into Eqs. (29) through (31) yields O, s Og s and
i i

3. Change the first line of the paragraph following Eq. 5lc

(p. 45) to:

The stresses caused by these forces are distributed around

4, Change the equation on the sixth line of p. 61 to:

-zc/r3 + (2/r)(C/r2) =0,

5. Change the third line following Eq. 69 (p. 66) to:

T. Combining Eqs. (68) and (69) yields:

6. Change the third line of the last paragraph on p. 66 to:

correction factors (66/6'0). The heating rate for each node Q)
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7. Change Eq. 75 (p. 68) to:

!
Oy £y [T +1)/2)
3T 2 '
n

(75)

8. Change the fourth line of the second paragraph following
Eq. 76 (p. 68) to:

on the initial guess for the temperatur: field (Tb); (2) the

9. Change the first line of the second paragraph on p. 70 to:

The above system shows nodes 1 through n as regular inter-

10, Change the eighth line on p. 74 to:

is the extent of the vector i; then 1 1is set to n-1l. Exactly

1i. Change the fifteenth line of the second paragraph on p. 79 to:

age (c.f. Appendix F of Vol. 2 of this report). When employing

12, Change the last line of the second paragraph on p. 79 to:

Vol. 2 of this report).

13. Change the seventh line on p. 87 to:

R. W. Newman and D. Brockelbank for their suggestions and assistance




